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ABSTRACT

This paper presents a procedure for studying industrial performance and related issues

such as changes in the wage structure. This procedure combines cluster analysis and

discriminant analysis as a package, and applies this package to time series data.  This

enables us to organize industrial data into groups with similar wage or performance his-

tories and then to extract summary time-series showing the main pattern of variation in

performance between groups.  
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1. Introduction

      This paper presents a procedure for studying industrial performance and related issues

such as change in the wage structure. The procedure combines cluster and discriminant

analysis, and applies them to time series data to explore, first,  the group pattern, and then

the forces that promote the formation of that group pattern.  This procedure can be applied

to many fields for which time series data are available on a single key measure of behavior

for a large number of related entities -- for example wages by industry or occupation or

expenditure by account in a study of government budgets.

The use of dated information as a tool for classification is well-established in disci-

plines such as geology, paleontology, archeology, and even in biology and developmental

psychology. For example, Chiodi (1989) uses time-series height and arm span data to clas-

sify children, and Hirsch and DuBois (1991) classify children based on the similarities in

behavior through time. So far as we know, however, the present sequence of cluster and

discriminant analysis on multi-variate time series data had not been done until Galbraith and

Calmon’s work on industrial wage rates (1990, 1994, 1996).  Further work in this area in-

cludes Galbraith (1998) and Ferguson and Galbraith (1998) on American industrial perfor-

mance and wage structures, Galbraith and Kim (1998) on Korean industrial policy,  and

Calistri (in progress) on industrial structures and wage change in the OECD.  Very

recently,  Kakizawa,  Shumway and Taniguchi (1998) have published a full development

and empirical application of closely related techniques to a problem in seismology, namely

that of distinguishing earthquakes from nuclear explosions. 
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A more formal presentation of our procedure is  now needed.  In  Section 2, we will

explain the theoretical linkage between wages or earnings and industrial performance un-

derlying the use of the former as attribute variables in a cluster-and-discriminant analysis.

In addition, we will propose a measurement of industrial performance, total payroll per

production hour,  which has practical and theoretical advantages in certain cases.   Section

3 will present the method of cluster-discriminant analysis, and section 4 will offer an exam-

ple to illustrate step-by-step the application of the procedure. 

2. Wages, Industrial Performance and the P-measure

The first step for cluster and discriminant analysis is to choose characteristic or at-

tribute variables for the objects to be clustered.  For analyses of industrial performance,

Galbraith and Calmon propose the year-to-year change of average wages by standard in-

dustrial classification (SIC) category as a performance measure.  The notion of  industry-

specific labor rents is helpful in motivating this choice.  If capital markets clear, but labor

markets don't, we should expect that rates of return on investment equalize across indus-

tries but that rates of pay will not. Hence, there will be industry-specific pay differentials.

There is a  persuasive body of information to this effect, summarized in Katz and Summers

(1989) and strongly seconded in an important paper by Blanchflower, Oswald and Sanfey

(1996).   The burden of this analysis is that scarce factors, such as human skill, eventually

capture the monopoly rents that an industry's market position may earn.
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The Katz-Summers argument is essentially static, based on the degree of monopoly

power enjoyed by an industry at a particular moment of time. But if degrees of monopoly

change (and who would deny it?) then surely the industry-specific labor rents will also

change. And if that is so, the patterns of change through time can serve as markers of

similarity and difference in economic performance  among and between industries.  When a

pattern of wage changes is essentially identical in two separate industrial subclassifications

over a long period of time, it becomes unlikely that this is accidental. Instead, similar

effects result from structural characteristics that produce like reactions to common causes.

That being so, patterns of similar effects can be used to classify industries according to

structural similarity, even if one has no direct measure of what the structural similarities

may be.

A drawback of the change in average wage rates by industrial group as a

performance measure is that there may occur intra-industry distributional shifts such as

from production workers to salaried employees, and these may confound the use of wage

change as a proxy for industrial performance. When data is available, we therefore  suggest

total payroll per production worker hour, a measure that Galbraith (1998) calls the “P-

measure,”  as a better measurement of industrial performance. 

The P-measure is closely related to industrial productivity, and its change is closely

related to industrial productivity growth. It also reflects the changes in market power and

position, such as improvements in technology or reductions in cost due to outsourcing
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(across industrial lines or national boundaries).  In contrast to the change in hourly

production worker wages, the P-measure is unaffected by shifts in the allocation of

earnings within an industry, say from production workers to non-production workers or

vice versa, which are not necessarily related to industrial performance. The P-measure is

also a better measure of industrial performance over time than say, value of total shipments

per hour would be, since the latter may be affected by pass-through of variations in

materials prices, while the P-measure is not. 

The use of percentage rates of change of our performance variable, rather than the

level, has an economic justification and also technical advantages. From an economic

standpoint, we are interested in the change in performance through time; this is a matter of

rates of change rather than of initial levels.  As a technical matter, since cluster analysis is

sensitive to the units and scale of variables, a change in scale of one of the measures can

change the implicit weight of the characteristic being measured, and hence the group

structure. But if we use annual percentage change, we can be free of units and scale

problems because each measurement is of the same form as any other, and scale-altering

forces such as inflation do not affect our analysis.
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3. Cluster-Discriminant Analysis

Cluster analysis is a technique used to classify objects into homogeneous groups or

clusters based on their similarities in some attribute or characteristic variables.  For

example, the technique may be used to group flowers by visual characteristics, or students

according to their pattern of scores on a series of tests.  For details about cluster analysis,

please refer to Lorr (1983), Anderberg (1973),  Aldenderfer and Blashfield (1984), and

Everitt (1974). Informative use of cluster analysis has recently been made in this journal by

Hirschberg and Slottje (1994).

 

Suppose there are N industrial sectors or objects, such as those based on SIC codes

at the  3- or 2-digit level. The attribute variables are percentage rates of change of our

performance measure -- the P-measure in this case -- for each year.   Each element ? L(i, t)

in the matrix ?L of order N x (T-1)  can therefore represent the annual percentage change

in performance of industry i at year t. The complete row of values across variables (years)

is called the industry’s  profile, and cluster analysis classifies industries into groups by the

similarity between profiles. Geometric similarity  can be measured by Euclidean distance,

which is defined as

where dij is an  element of D, the  N x N matrix of distances between objects.
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Deciding the structural model for the expected clusters, as well as the clustering

method or algorithm which can generate this cluster structure, is the most important step.

There are two kinds of cluster structure, the chained cluster and the compact cluster.

According to Lorr (1983, p. 18), a chained or serpentine cluster is  a category of objects in

which every member is more like one other member than it is like any object not in the

category. The compact or ellipsoidal cluster is a category of which all members are more

like every other member than they are like objects in any other subgroup; such clusters

exhibit “high mutual similarity.”  For the comparison of industrial groupings, we have a

strong preference for high mutual similarity, and therefore for compact structure. 

There are many available clustering algorithms and still more are under

development. All of these methods fall into two major categories, single-level cluster

methods and multilevel hierarchical methods, with the choice typically depending on the

problem. But according to Lorr (1983, p. 20), hierarchical methods are often preferred.

One of the reasons is that hierarchical methods tend to reflect a developmental or

evolutionary pattern or sequence. For this reason, most biologists favor this kind of

method, and since our data are historical in character, so do we. 

We choose Ward's Method, a hierarchical method, also known as the Minimum-

Variance Method (Ward, 1963). This method begins by treating each object as a separate

group,  so that no information is missing. At each step afterwards, group or cluster

numbers are reduced from N to N-1, N-2, .... 2, 1 in such a way that a specified objective
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function is minimized at each step. The objective function Ward chose is the increase in the

total error sum of squares -- or the geometric distance from each data point to the center of

its cluster -- due to the merger of two objects, clusters, or objects-and-clusters to form a

new, more encompassing cluster. Details are in Anderberg (1973, pp 147-8). In our case,

the error sum of squares for cluster g is:

(2)    

 where        

(3)

is the sum of changes of the P-measure at year t for industries in the g-th cluster; and

           

(4)

is the sum of squared changes of the P-measure in all years for all industries in the g-th

cluster. Here, mg is the number of industries in cluster g, and ? Litg is the change of the P-

measure at time t for the i-th of mg industries in the g-th cluster.                                           

                         

The increase in the total error sum of squares due to the merger of clusters g and h

to form the new cluster k  is

? Egh = Ek - (Eg + Eh)          

(5)
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By Ward's method, in each step, cluster g and h  will be merged to form a new

cluster k  if they satisfy

      Min(? Egh)

(6)

for all possible values of g and h, contingent on the clustering achieved at the previous step. 

The next question is when to stop, and this is essentially a matter of deciding when “too

much” information is being lost by forcing dissimilar objects to associate; that is, when  the

minimum increase in the error-sum-of-squares has become too large.  The semi-partial R2

criterion can be used to choose this point (cf.  Lorr 1983, p. 99). There is an element of

judgment about applying this criterion, as we shall see below.

Discriminant analysis is a multivariate technique which is used to examine the

differences between two or more groups of objects with respect to several variables. The

basic elements of a discriminant analysis are objects, group membership of objects and a set

of attribute or characteristic variables. The goal of the analysis is to find discriminant

function(s) which can differentiate groups, that is, can make group-means on the

function(s)  differ widely. For those who are interested in more technical details on

discriminant analysis, please refer to Tatsuoka (1988) and Klecka (1980).
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Since we get cluster membership from cluster analysis which classifies industries by

annual changes of the P-measure, an intuitive way to construct a discriminant function is to

linearly combine these annual changes, that is:

F = a1? L1 + a2? L2 + a3? L3 +...+ at-1? Lt-1

(7)

where ?  Lt is change of the  P-measure in year t,  i = 1, 2, ...., T-1.

To get the coefficients a1, a2, ... ... aT-1,  or simply the (t-1) vector a, consider the (T-

1) dimensional matrices B and W, where the diagonal element of B is the sum of squared

differences between groups for each year t=1 to T-1 and the diagonal element of W is the

within-group sum of squared differences; off-diagonals are cross-products.  The problem is

to find  a so that F differentiates group-means in such a way that minimizes within-group

differences (W) and simultaneously maximizes between-group differences (B). This can be

implemented by solving a maximization problem:

   Max[(a'Ba)/(a'Wa)]                                    

  (8)

Applying differential calculus to (8), we get:

M /M a [a’Ba/a’Wa] =  0

(9),  or

[W-1B - ?I]a = 0

(10)
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Here  ? is the vector of  eigenvalues associated with matrix W-1B. Since W and B 

can be calculated from our data set, we can solve Equation (10 ) to get eigenvalues   and

associated eigenvectors a. In the literature of discriminant analysis,  a are often called

canonical roots of the discriminant functions. Suppose there are G groups from cluster

analysis, the number of eigenvalues and eigenvectors is determined by the rank of W-1B

(Klecka, 1980):

    

Min[(G-1), (T-1)]        

(11)

Since in most cases, if not all, we run discriminant analysis with more years than the

number of clusters, we can use (G-1) as the number of eigenvalues and eigenvectors safely. 

 The discriminant function associated with a bigger eigenvalue should more powerfully

explain the differences among groups than those with smaller eigenvalues; the eigenvalue ?

is therefore called the discriminant criterion (Tatsuoka 1988 p. 213).

 

How many eigenvectors one should actually use depends on how many are needed

to account for the between-group variations. If, for example, the first three functions

associated with the three biggest eigenvalues can account for a high fraction of  all

discriminatory power, we are confident that three functions are sufficient. In practice, the

acceptable proportion, as well as the optimum number of functions, depends on the

problems at hand.
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If we derive G-1 discriminant functions, they are:

F1 = a11 ? L1 + a12? L2 + ... + a1(t-1)? Lt-1

F2 = a21 ? L1 + a22? L2 + ... + a2(t-1)? Lt-1

...............................

FG-1 = a(G-1)1 ? L1 + a(G-1)2? L2 + ... + a(G-1)(t-1)? Lt-1

(12)

in which the  as are known. Obviously, the a  are actually a set of weights on annual

changes of the P-measures. The weights, which are components of an eigenvector, form a

(T-1) dimension vector in space. But if we assume that the weight associated with a

specified annual change is that-year-specific, we can reasonably assume that the sequence

of weights for each year also form a time series. By doing so, a (T-1) dimension vector in

space is converted into a one-dimensional time series with (T-1) values at (T-1) different

time points. This is the beauty of the present procedure and the one feature that we claim

to have pioneered.

Based on the theoretical and empirical background of the problem at hand, we can

next try to use historical economic data to match and identify these eigenvectoral time-

series. For example, we might match the weights of F1 with a GNP time series, and F2 with

the interest rate, and so on..  If we are successful in making such a match for some subset

of our G-1 eigenvectors, we can infer that in those cases we have identified the economic

forces underlying the differentiation of group behavior, and, because we have the

eigenvalues, we also know the relative contribution of each force.  
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An intuitive way to show how discriminant functions i and j differentiate clusters  is

to plot their scores on functions i and j on a Root i -- Root j coordinate. The scores for

each group can be calculated by simply substituting each year's  group-mean of the P-

measure change of each group into Equation (7). To show how discriminant functions

differentiate each individual industry,  follow a similar procedure using the annual values of

change in the P-measure for each industry.   The resulting scores, which are the vector

inner-products of the weighting function a and the vector of rates of change in our

performance measures, are scalars which can be plotted against a variety of variables to

reveal cross-section relationships. 

We will not present empirical examples in this paper, both to conserve space and

avoid duplication with other work in the UTIP series. Presently the most complete

applications in print are Galbraith (1998), Ferguson and Galbraith (1998), and Galbraith

and Kim (1998).   Additional applications will be made available on the UTIP site

(http://utip.gov.utexas.edu) as they become available.  In our repeated experience, this

technique is useful for many social science problems where the essential problem is to

identify the principal patterns of movement in time-series data sets involving blocks of

observations on similar entities, such as firms or industries,  where the appropriate group

structure must be derived from the data itself. 
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