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Abstract: This paper discusses the dynamic properties of generalized entropy measures of

inequality, deriving an explicit expression linking changes in inequality with changes in the

growth income. This establishes a time-wise decomposition for the family of generalized

entropy measures of inequality, showing that the rate of change in the distribution of

income can be divided into two parts. One is purely a function of the levels and rates of

change of macroeconomic variables; a second part depends exclusively on the micro

nature of the distribution process. We then focus on a subset of generalized entropy

inequality indexes, focusing on Theil measures. By assuming that the distribution process

follows a specific rule, we further simplify the time-wise decomposition formula,

establishing a direct relationship between the rate of income growth and the rate of change

in inequality as measured by Theil measures. A specific application of this formula to the

simulation of an economy with a constant average positive growth rate produces behavior

consistent with the Kuznets hypothesis.
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1- INTRODUCTION

Theil (1967) inspired the development of the entropy-based measures of inequality.

Shorrocks (1980) following the pioneering work of Bourguignon (1979), defined these

measures, for α ≠ 0 1, , as
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where yi is the income of individual i and Y is the total income available in a society

composed of n individuals. Theil’s T measure corresponds to α=1:
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and α=0 corresponds to Theil’s second measure:
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Any entropy measure of the form [1] is Lorenz consistent, fulfilling all the

desirable properties of “well behaved” inequality measures. An important characteristic

unique to these entropy based measures, immediately noted by Theil for the special case of

his T and L indices, is that they are decomposable across groups that parse the individuals

of the population into mutually exclusive, completely exhaustive, “bins”. Overall inequality
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can be separated into a between group component and a within group component. If we

consider that the population is divided into k groups, each with nj individuals, j=1, ..., k,

then, in general, the decomposition takes the form:
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where the weights, Rj, for entropy measures of the type [1], are given by:
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where Yj is the total income and nj the total population in group j. Shorrocks (1980, 1984)

proved the strong result that any measure of inequality is decomposable in the form of [4]

if and only if it is an entropy-based measure of inequality of the form [1]. More formally,

Shorrocks showed that any inequality measure is Lorenz-consistent, normalized,

continuous, and additively decomposable if and only if it is a multiple of a generalized

entropy measure. Therefore, entropy-based measures of inequality are important whenever

one is interested, whatever the reason, in finding or using a group-wise partition of an

inequality measure. An important reason to use the decomposition properties of these

inequality measures is associated with the possibility of constructing long and dense time-

series of inequality, as explored in Conceição and Galbraith (2000).

The explicit formula for the decomposition of between and within group inequality

is given by:
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where
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Expressions [6] through [8] highlight the self-similar property of the generalized

entropy measures at different levels of aggregation. In essence, the entropy measures

quantify the extent to which the income shares (Yj/Y for groups or yi/Yj for individuals in a

group) differ from the population shares (nj/n for groups and 1/nj for individuals in a

group)1, as explored in Conceição and Ferreira (2000).

Mostly, the decomposition properties of the entropy-based measures have been

explored in the literature in a static context: group and individual properties are defined

for a set point in time. In this paper we explore the “decomposition” properties across

time. Figure 1 helps to illustrate the conceptual reasoning behind the time-wise

decomposition. The graph on top shows a hypothetical distribution of income of the

                                               

1 Naturally, this interpretation is equally valid for inequality across individuals, where [1] can be written
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population at instant t0. To the left, we divide this population into two groups, g1 and g2,

making a static analysis (no changes through time are allowed). With the decomposition

given by [4] we know how to relate the inequality in the initial distribution, with the

inequality within and between the distribution of the populations in groups g1 and g2.

Consider now the graph below and to the right. There we have the original

distribution for t0 and the distribution of the entire population at an instant t1>t0. Is there

any way to establish a formal relationship between the inequality based entropy base

measures for t1 and t0?

yi

i

yi

i

yi

i

g1

g2 t0

t1

group-wise
decomposition

time-wise
“decomposition”

Figure 1- Group-wise decomposition and time-wise “decomposition” of income distribution.

A way to establish a relationship between the measures of inequality for the two

different time periods is by deriving an explicit expression of the rate of change:

[9]
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The objective of the paper is to derive such an expression, making explicit the

functional form to the right of [9]. We call expression [9] a time-wise decomposition in

the sense that, as in the group-wise decomposition, we are able to have a relationship of

the inequality measures in two different time periods; while in the group wise

decomposition a static total inequality is decomposed into two static measures of

inequality, in the time-wise decomposition two measures of inequality in two consecutive

time periods are linked through the change (or the rate of change) in inequality.

We consider first, in section 2, the discussion of the time change of general entropy

measures. In section 3 we focus on the Theil measures. The fundamental result of both of

these sections is the decomposition of the change in inequality measures over time into

changes at different levels of aggregation. In particular, we are able to separate changes

exclusively associated with macro variables from micro behavior. We the present in two

sections two application of these general results. In section 4 we focus on changes in Theil

measures and show that by defining income distribution rules (which rule the micro

behavior) we are able to express the changes in the Theil measures exclusively as a

function of macro variables. One of the distribution rules analyzed produces a relationship

between income growth and inequality change consistent with the Kuznets hypothesis. In

section 5 we approach the problem of linking together the dynamics of the between-group

component of Theil index at different levels of aggregation. Section 6 summarizes and

concludes the paper.

2- TIME-WISE DECOMPOSITION OF GENERAL ENTROPY BASED MEASURES

OF INEQUALITY

The results in this section are valid for any generalized entropy based measure of

inequality for which α ≠ 0 1, . The special cases of the Theil measures will be analyzed in

section 3. We begin by taking the time derivative of expression [6], which results in:
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Expression [10] reflects the usual way in which changes in inequality over time are

normally understood. The last term on the right-hand side of the last equality sign

represents the total change in inequality associated with changes within each of the

groups, while the first term captures the dynamics of the between group changes.

Focusing, first, on this last component of [10], making explicit the time-derivative

of Rj gives:

[11] ( ) ( )( )[ ]ppggRR jjjj −−+−= αα 1&

where gj is the rate of change of income for group j and g is the overall rate of change of

income, pj is group’s j rate of population change and p is the overall rate of population

change:
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Expression [11] reflects the commonly used decomposition of the changes in

inequality across groups into an income effect and an allocation effect. The income effect,

associated with changes in the average income of each group as well as the overall growth

of income, is captured by α(gj- g): for each group, the growth rate of income of that

group is contrasted with the overall growth rate of income. The impact of the allocation
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effect is given by an expression that is formally equivalent to that of the income effect: (1 -

α)(pj- p). Each of these two effects is multiplied by Rj and enters in the summation of

expression [10] “weighted” also by the within group inequality:
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Expanding in [13] the terms with the growth rates of income and population leads

to an expression that decomposes the change in inequality between groups into two

components:
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The first component in [14] – that is, the second line of the expression after the

equality sign – accounts for the dynamics of income and population at the group level. The

third line in expression [14] captures the total changes in population and income.

Therefore, this last component can be understood as a macro component of changes in

inequality, while the second line in [14] can be considered a meso component (since it is

between the macro level and the individual, or micro, level).

There is a clear symmetry between the structure of the meso and of the macro

components. Each term in the summation of the meso component has the same structure

of the macro component, except for the weight Rj. This structure corresponds to

multiplying the level of inequality (minus the constant 1/(1-α)) by a linear combination of
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the rates of changes of income and of population, with the linear combination being given

by multiplying the rate of change of income by α and the rate of change of population by

(1-α).

The time derivative ( )jEα
&  requires a further transformation before we can move

into the actual computation of an explicit expression for the change in the within group

inequality. The transformation is needed because the upper limit, nj, for each j, in the

summation that defines ( )jEα , given by [7], changes over time. In other words, the

population of each group is not constant, and the upper limit in the summation is varying

over time. To deal with this problem, we transform the discrete distribution of income

across individuals defined in [7] into a continuous distribution.

For each group j, the distribution of income is assumed to be given by a density

distribution function fj(z), where z is the parameter that represents the level of income,

with [ [∞∈ ,0z . Therefore (omitting the explicit dependence on time to simplify the

notation):
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The challenge, now, is to transform expression [8], which is discrete in income,

into a continuous expression in income. This transformation has to be followed by the

transformation of the summation in [7] into a continuous integral over z. First, consider a

neighborhood dz of z. Assuming that the neighborhood is small enough, the number of

individuals that it contains is nj.fj(z)dz, since fj(z) can be considered constant for
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 (see Figure 2). Additionally, all individuals in this neighborhood

can be assumed to earn the same income z, because dz is very small, and therefore the total

income in the neighborhood is z.nj.fj(z)dz.
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fj(z)

z

fj(z)

z z+1/2dzz-1/2dz

fj(z)

z

fj(z)

z z+1/2dzz-1/2dz

Figure 2- Defining a neighborhood of the density distribution function.

Each neighborhood has more than one individual, so the formula we need to use to

compute inequality is the between-group expression (or “between-neighborhood”, to be

more precise), where [5] is now transformed into a continuous formulation with reference

to group j:
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The “between-neighborhood” inequality is then given by:
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The between-neighborhood inequality is, indeed, the total within group j

inequality, as we indicate in [17], since we assume that all individuals in each

neighborhood earn the same income z and, therefore, there is no within-neighborhood

inequality. There is a subtle, but very important, difference between [17] and the discrete

formulation given by [7], associated with the difference between [16] and [8]. While in [8]

the ratio between the income share and the population share (to the α power) is divided by

nj, in [16] this division is absent. The reason is that the division by nj in [8] normalizes the

summation; for example if all the ratios between income and population are one, the result

of the summation of all the ratios is nj. With the division by nj, the summation term in [7]

is normalized to one, and the inequality measure is zero. With the continuous formulation

this normalization is not required, since we are using a density distribution function, so

that if for all z we have z=Yj/nj, the result of the integral is one, and the inequality measure

is zero2.

The time derivative of expression [17] can now be taken allowing for changes in

the population for each group:
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2 A formally more accurate formulation of the idea of perfect equality would be to say that if all

individuals have the same income, which must necessarily be Yj/nj (the arithmetic mean income), then the

distribution function is a Dirac delta (impulse) function centered on z= Yj/nj.
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Again we can see in [18] the decomposition into a meso (group level) component

and a micro (individual level) component. The first term after the inequality sign, which

represents changes aggregated at the group level (meso component), has the same

structure of the two components shown in [14], with the inequality at level j (plus a

constant) being multiplied by a linear combination of the changes in income and

population of group j. In fact, this specific linear combination happens to be the symmetric

of the rate of change of average income in group j. The second term in [18], with the

integral, represents changes at the individual level. The time (partial) derivative of the

density distribution function captures the way in which the shape of the distribution

changes over time: for each income level, z, ( ) tzf j ∂∂  gives the instantaneous addition or

reduction in the density of individuals at the income level z.

We can now introduce both expressions [18] and [14] in the previously derived

general decomposition of changes in inequality given by [10] to obtain a formal time-wise

decomposition of a general entropy based measure of inequality, with the macro, meso

and micro components presented in successive lines, respectively, from the top:
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With [19] we capture the relationship between changes in the inequality measure

with changes at the aggregate, group and individual levels. While the macro component is

left unchanged from [14], the meso components of [14] and [18] interact in a way that

leaves the final meso component in [19] only as a function of changes in population of

group j.
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This section accomplished the time-wise decomposition for all general entropy

based measures of inequality with the exception of the Theil measures. The decomposition

shows that it is possible to separate the changes over time in the inequality measure into

changes at different levels of aggregation. In the next section we proceed along the same

lines for Theil measures.

3- TIME-WISE DECOMPOSITION OF THEIL MEASURES

The general entropy measures become the Theil inequality measures, defined by

[2] (Theil’s T) and [3] (Theil’s L) when α is, respectively, one and zero. The Theil

measures are important because they are the only inequality entropy measures for which

the summation of the weights Rj defined in [5] equals one. Consequently, it is only for the

Theil measures that the within-groups inequality component of the decomposition defined

by [6] is a weighted average of the inequality of all groups. Shorrocks (1980) noted that

Theil (1967) had seen in this special feature of Theil measures the property of

independence between the weights and the between group component of inequality. The

Theil measures are, perhaps for these reason –which facilitates the interpretation given to

the within-group/between-group decomposition of total inequality – the most commonly

used entropy measures of inequality. This section performs essentially the same type of

time-wise decompositions of section 2 but only for Theil measures.

The decomposition of the Theil measures [2] and [3] is given below, with [5]

representing the decomposition of Theil’s T and [6] of Theil’s L. The income shares are

given by 
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The comparison between the two decompositions highlights the well-known fact

that the role of the income (population) shares in T is played in L by the population

(income) shares.

The time derivative of Theil’s T is given by:
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and of Theil’s L by:

[23] ∑∑
==

+











+





+=

k

j
jj

k

j j

j
jj

j

j
j Le

w
e

dt
deT

w
e

eL
11

loglog &&&

Expressions [22] and [23] are similar to [10] in that they decompose changes in

inequality into the changes due to the income and population effects at the group level (the

first term to the right of the equality sign in each formula) and the changes of inequality

within each group. The formulas are the same, with the role of the income shares and the

population shares reversed when one goes from one to the other.

If we take only the time change associated with the groups, then we obtain for T:
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and for L:
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Again, as in [14], we see a clear decomposition of the changes into a meso and

macro components. Besides reversing the role of the shares, we need now to reverse also

the role of changes in population and changes in income. Therefore, while for T the macro

component is given by multiplying T by the rate of change of income and subtracting the

rate of change in population, for L the macro component is given by multiplying L by the

rate of change of population and subtracting the rate of change of income. As in [14], we

see that there is a formal similarity in the structure of the expressions for the meso and the

macro components. For both T and L, the meso component is constituted by a summation

of the components that would yield the macro component, were it not for the weights in

the summation (which are the same weights used in the total within groups inequality).

To deal with the change of inequality within each of the groups we must, as in

section 2, first begin by expressing the within group inequality in a continuous

formulation. Following the same procedure as with the general entropy based measures of

inequality, we obtain for the T measure:
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The symmetry between the T measure and the L measure is not apparent in the

comparison between [28] and [29]. The reason for this lack of symmetry is associated

with the fact that the weights for the L measure are the population shares, the changes of

which are embedded in the partial time derivative of the density distribution function. In

other words, we cannot go as far in deriving an explicit expression for the time-wise

decomposition of the L measure as we can for the T measure.
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Still, as in [18], the rate of change in [28] and [29] is decomposed into a meso and

micro components, with the micro component having the same structure (which is

basically the integral of the time derivative of the density function weighted by the same

weights that weigh the density function in the measures). The meso component is, again, a

function of the change in average income in within the group. For the T measure, this

change in average income is multiplied by one plus Tj, while for the L measure there is no

further dependency on Lj.

Substituting [28] and [29], respectively, in [22] and [23], and using also the

explicit expressions [24] and [25], results in the explicit time-wise decomposition for the T

measure:
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and for the L measure:
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The time-wise decomposition of changes in Theil measures partitioned changes in

inequality into changes at different levels of aggregation. In particular, we are able to
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isolate changes associated with macro, meso and micro behavior, in the same fashion we

accomplished for the general entropy based measures in section 2.

It is clear from [30] and [31] that further simplifications of the time-wise

decomposition depend on providing and explicit functional form for the density

distribution function or an explicit functional form for the changes in the distribution

function over time, which is a weaker condition than defining explicitly the functional form

for f. Making explicit the functional forms for f or for the partial time derivative of f

corresponds, in the first case, to a definition of the way in which income is distributed in a

static context and, in the second case, to a specification of a rule that determines how

income is distributed from one instant to the next. In either case, we are entering into the

definition of micro behavior. In section 4 we explore the impact of defining possible ways

to describe micro behavior on the expressions for the time change of the Theil measures.

4- INCOME DISTRIBUTION RULES AND THE DYNAMICS OF THEIL

MEASURES

In this section we focus on one application of the explicit formulas derived above

for the Theil measures but with no partition of the population into groups. In this context,

the expressions for the Theil measures given by [26] and [27] turn, for the T measure, to:
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The time derivatives are, for the T measure:
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and for the L measure:
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where µ&  is the change in mean income, which is equal to (g – p).

Theil (1967) showed that by assuming an explicit expression for the density

distribution function the Theil measures could often be expressed only as a function of the

parameters that define the assumed distribution. Specifically, Theil experimented with two

distributions functions that are commonly used to describe the distribution of income: the

log-normal and the Pareto distribution functions. For the log-normal, Theil showed that

the T measure is reduced to half the variance of the logarithm of income, and for the

Pareto distribution the T measure is given by an expression that is a function only of the

Pareto constant.

Our approach in this section differs from Theil’s in that instead of assuming that

the income is distributed according to some specific functional form, we define a rule for

the dynamic changes in the distribution function. Therefore, our approach is more general,

because the results continue to be valid with an arbitrary distribution function. After

defining the dynamic distribution rule (we will use only distribution rule from now on, but

it should remain clear that it is a dynamic rule) it is possible to express, in some cases, the

changes in Theil measures exclusively with macro variables.
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To specify an income distribution rule in [34] and [35] is equivalent to define an

explicit functional form for 
( )
t
zf

∂
∂ . This time derivative represents, as mentioned above,

the change in the density of individuals for the level of income z. A simple income

distribution rule can be defined as3:

[36] ( ) ( ) ( )zfz
t
zf µβ −=

∂
∂

where β is any real constant. The rule defined by [36] describes a dynamic

behavior in which the density change for a certain level of income z depends on the

deviation of that income level z from the mean of overall income. The constant of

proportionality is the factor β, the sign of which determines if the distribution rule is

“progressive” or “regressive”. If β is negative, then the distribution rule is progressive:

there is an increase in the density of individuals with incomes below the mean, and a

decrease in the density of individuals with incomes above the mean. If β is positive the

opposite occurs, and the distribution rule is regressive.

Including the distribution rule [36] into expression [35], which defines the rate of

change of the L measure, produces a particularly simple formula, where the changes in the

L measure are given as a function only of macro variables4:

                                               

3 The explicit dependency on time was omitted to simplify the notation, but it is important to bear in mind

that, with the exception of z, which plays the role of a parameter, and β, by definition a constant,

everything in [36] is time-dependent, including the mean and the density distribution function.

4 With distribution rule [36] it is not possible to reduce the change in the T measure to an expression that

is only a function of macro variables; therefore, we discuss only the changes in the L measure associated

with the income rule [36].
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It is important to note that with the distribution rule [36] the change in mean

income is defined endogenously, since:
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it follows that:

[38] ( ) ( )tt 2βσµ =&

where σ2 represents the variance of the distribution f. Therefore, a progressive income

distribution rule (β negative) is accompanied by a negative growth of average income, and

a regressive distribution rule by a positive growth of average income. The income

distribution rule [36] is a possible way to formalize the trade-off between inequality and

growth, which is part of some theoretical and empirical work on the relationship between

economic growth and economic inequality. However, it is not a very flexible income

distribution rule, precisely because the growth of average income is defined endogenously;

the rule does not allow for the possibility of income growth being determined by other

exogenous factors, beyond the distribution rule itself.

Before considering a more flexible distribution rule, it is worthwhile noting that it

is possible to express the change in the L measure associated with the income distribution

rule [36] exclusively with entropy based measures of inequality and the mean income.

Since E2 is proportional to the coefficient of variation, it is easy to show that with the

income distribution rule [36]:
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We consider now a new distribution rule defined by:

[40]
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Income distribution rule [40] is structurally similar to rule [36] and can be

interpreted in the same way: the gain, or loss, in population density at income level z

depends on the constant β and also on the “distance” of this level of income z from the

mean income. However, there are subtle, but important, differences. First, we consider

now a relative “distance”, since the difference between z and the mean income is divided

by z. Secondly, the relative distance is multiplied by the growth rate of mean income.

Finally, we add one more term with the growth rate of mean income multiplied by the

density function. This means that all levels of income gain or loose density proportionally

to the existing density level and the rate of growth of mean income, with the

proportionality being defined by the constant β and the relative distance from the mean.

It is easy to see that the income distribution rule [40] does not determine the

growth of mean income endogenously. In fact, for the class of income distribution rules

defined by:
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where ( )•g  is any function that does not depend on z, the growth rate of income does not

depend directly from the distribution rule. The reason is that:
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µµ dzzzfdzzfz . In the case of the specific distribution rule [40]

we are considering the special situation where ( ) β=•g . Including the explicit distribution

rule [40] into the expression for the change in the T measure [34] leads to5:
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Expression [42] provides an explicit relationship between the growth rate of the T

measure and the growth rate of mean income. The relationship is complex, despite the fact

that the income distribution rule defined in [40] was relatively simple. In fact, there is

almost a trade-off between the simplicity of the income distribution rule and the simplicity

of the relationship between the rates of growth of mean income and of the T measure. One

way to express formally this trade-off is to make explicit the rate of change of the T

measure, given the income distribution rule in the more general form [41]:
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5 With distribution rule [40], it is the T measure that allows for a full expression only as a function of

macro variables; with this distribution rule, that is not possible for the L measure.
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We can now “choose” the function ( )•g  so that we obtain a simple expression

when we make explicit this functional form in [43]. This may entail that the income

distribution rule becomes complex and hard to interpret. For example, if we make

( ) ( )
LT

Tg
+
−=• 1β  then the income distribution rule is rather complex, but [43] turns to the

simple form:
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With this specific transformation we eliminate the dependency on the L measure.

Therefore, it is easier to see the dynamic impact of the distribution rule [41] on the

relationship between income growth and inequality change, which depends now only on β
and on the growth rate of mean income (which must be provided exogenously).

Depending on the value of β, and on an initial level of income and inequality, the growth

rate of T can be either positive or negative. If, for some initial conditions, the rate of

growth of T is positive (meaning that T is increasing) and if we assume also a positive rate

of growth of mean income, after a certain amount of time the growth rate of T will

become negative (since µ is growing and 1/T is also growing, because T is decreasing).

From then on, growth in mean income will be accompanied by decreasing inequality.

The evolution of the relationship between income growth and the rate of change of

inequality described in the last paragraph corresponds to the relationship between income

and inequality of the Kuznets hypothesis. Consider, as an illustration, a situation where

both β and the growth rate of mean income are fixed and defined exogenously as in the

note to Figure 3. The initial levels of mean income and inequality are, respectively, one

and 0.1. In these conditions, the income growth is inequality augmenting in a first stage,

but a threshold level of mean income is reached after which income growth is inequality
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reducing. This behavior is consistent with the Kuznets hypothesis, as illustrated graphically

in Figure 3.
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Figure 3- The Kuznets Hypothesis

Simulation of the evolution of the relationship between income per capita and inequality predicted by [44],

considering %2=
µ
µ&

 and β = 12.

We used [44] to illustrate how we can choose a micro dynamic income distribution

rule that produces macro behavior consistent with one theory – in the case of Figure 3,

with the Kuznets hypothesis. Another application for [44] consists of determining

empirically values for β for a given context, from known values of growth and changes

and levels of inequality. More generally, we could try to determine the micro distribution

rule of the form [41] that is consistent with a certain macro behavior (in other words,

instead of looking for a parameter, defining the function g).
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In conclusion, we provide in this section a template to map dynamic micro

behavior into macro manifestations of the relationship between income growth and

inequality changes. Further, we showed that by specifying a rather general dynamic

income distribution rule the expression for the time changes of Theil measures can be

expressed, in certain cases, exclusively as a function of macro variables.

5- DYNAMICS OF THE BETWEEN-GROUP THEIL COMPONENT AT DIFFERENT

LEVELS OF AGGREGATION

In the dynamic analysis of this section, we will be looking only at inequality across

groups, that is, we will not analyze dynamics of inequality across individuals. However,

there will be an added level of complexity associated with the fact that we will consider a

sequence of nested and hierarchic grouping structures. A static analysis of the behavior of

the Theil index in sequences of grouping structures was presented in a previous paper

(Conceição, Galbraith and Bradford, 2000), and we extend, with this section, the results

of that paper adding the dynamic dimension. We will consider only fixed grouping

structures, so that the number and relationship of the different levels of aggregation do not

change over time.

With a fixed grouping structure the sources of between-group inequality variation

over time are associated with income and population effects. Each effect is reflected in the

way the Theil index responds to changes in the income and population shares. To analyze

the Theil index response to income and population changes over time with generality we

take the time derivative of the between group component only of the Theil, that is, of the

first summation of the equation on top in [20]:
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The first term in the summation corresponds to the income effect, while the second

to the population effect. The rates of change of the shares are given by:

[46]
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The intuition behind [46] is now immediate: the change in the shares of group j is

proportional to the difference between the rate of change of income (population) in group

j and the overall rate of income (population) change. If group’s j income changes at the

same rate as the change in overall income, then the share remains the same. If the growth

rates differ, the change depends also on the level of the shares.

The dependency of the between group Theil index on income and population

changes is given by:
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which in conjunction with [46] gives:
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Expression [48] shows how the between group Theil index reacts to changes in

income and population. Essentially, the change in the between group Theil index depends

on the difference between the rates of change of the shares of income and population of

each group with the overall rates of change of income and population. If a group’s share

of income and population change at the same rate as the change in overall income and

population, then this group does not contribute to changes in the Theil index (between

group will be omitted in the remaining of the section, but it should be understood that we

are considering only the between group component).

If gj is different from g or pj is different from p, then group j contributes to changes

in the Theil. The way in which changes in income and population in group j affect the

Theil index depends on whether group j is a “poor” or a “rich” group (poor in the sense

that the share of income is substantial lower than the share of population). The

multiplicative factor [log(wj/ej)+1] determines whether (gj-g) contributes positively or

negatively to the change in Theil. If [log(wj/ej)+1]>0 (meaning that we are dealing with a

“rich” group) then if gj>g the income effect increases the Theil index, because a “rich”

group gains income at a rate higher that the overall population, increasing inequality.

Since (pj-p) is preceded by a minus sign, the population effect works in a

symmetric way (if a “rich” group gains population at a rate higher than the overall

population growth, then inequality decreases). When [log(wj/ej)+1]<0 we are dealing with

“poor” groups, and the effect of income and population changes is opposite of the one

described above.

The effect of [log(wj/ej)+1] goes beyond determining the sign that precedes (gj-g),

since it also weighs more heavily changes at the lowest shares of income. Figure 1 shows

the dependency of [log(wj/ej)+1] on wj, assuming that ej=0.5.
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Figure 1- Multiplicative Factor of the Income Effect: Dependency on the Income Share

When the wj=ej/e then [log(wj/ej)+1]=0; wage shares lower than ej/e lead to a

negative [log(wj/ej)+1] and the reverse happens when the wj is higher than ej/e6.

Additionally, the shape of the curve is such that when [log(wj/ej)+1] is negative (that is,

when we are dealing with “poor” groups) the expression [log(wj/ej)+1] weighs more

heavily on (gj-g) than when [log(wj/ej)+1] is positive (“rich” groups).

What is the meaning of the “cut-off” point wj=ej/e for which [log(wj/ej)+1]=0?

This is the point at which group j’s contribution to the Theil index attains its minimum, as

illustrated in Figure 2. Conceição and Ferreira (2000) provide an intuitive interpretation of

this “cut-off” point.

                                               

6 Here “e” is Neper’s number.
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Figure 2- Group j’s Contribution to the Theil Index: Dependency on the Income Share

Yet another way to express the change over time of the Theil index is given by:
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which shows, again, that changes in the between group component of the Theil can be

separated into a “macro” component (p-gT’) and a “micro” component, which depends on

the dynamics of the distribution of income and population across groups. This

decomposition is explored in Conceição and Galbraith (forthcoming). The “micro”

component is composed of two summations: ( )∑∑
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of the micro component mirrors the structure of the macro component. The first
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summation adds the group’s weighted rates of population change, where the weights are

the income shares. The second summation is a modified Theil index, where the weights of

log(wj/ej) are, instead of wj, the changes in the wage shares (note that

wj(t+1)=wj(t)+gjwj(t); the weights are, then: wj(t+1)-wj(t)). So, in a way, the micro

component is, as the macro component, a difference between the rates of population

change and the rate of income change combined with the Theil index.

The general results on the between-group dynamics of the Theil index are

important to formalize the relationship between the dynamics of the Theil index at

different levels of aggregation. A result derived in Conceição, Galbraith and Bradford

(2000) is that the relationship between the levels of the between-group Theil index at

consecutive levels of aggregation can be expressed as:

 [50] T′s+1= T′s + Ts

where s indexes a grouping structure in a sequence of nested and hierarchic grouping

structures. For example, s could represent the regional aggregation of individual data at

the state level; a lower level of aggregation is indexed by s+1, and this could correspond

to having the data aggregated and the county level, continuing with the same example.

Therefore, expression [50] is important because it shows that the information gain

associated with calculating the Theil index at a lower level of aggregation – moving down

from the state to the county level, for example – is a single additive factor. Since the Theil

index is always positive or zero, we can also see that at a lower level of aggregation the

Theil index will always be equal or higher than that computed at a higher level of

aggregation. Additionally, expression [50] shows that, unless the distribution of income

across the groups at level s (state) within each s+1 group (county) is homogeneous, the

level of the Theil index at the two levels can be quite different.

However, our interest in this paper is in the dynamics of inequality. From [50] it is

obvious that the rate of change at the lower level of aggregation is also the simple
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summation of the change at a higher level plus an additional term. In other words, the

informational gain on the dynamics of the Theil index associated with a less aggregated

grouping structure is given by:

[51] sss TTT &&& =−+ '' 1

The sign and scale of the term sT&  is now ambiguous, because the information gain

associated with considering a lower level of aggregation can either increase or decrease

the rate of change at the higher level. The explicit expression for sT&  is given by:
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Expression [52] shares the general structure of the rate of change of the between-

group Theil shown in [49], but is slightly more complex, given that Ts is not a “pure”

between-group Theil. In the context of [52], micro now means at level s+1. Therefore, the

first two terms to the right of the equality sign in [52] still reflect macro behavior. The first

term is a weighted summation of the population shares at level s, with the weights being

the income shares of all the groups in s. The second term is the overall income growth rate
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“corrected” by Ts, following the structure of the macro term in [49]. The micro term is the

weighted summation of the differences between the growth in population shares and

corrected wage shares at level s+1. The weights are the income shares of the groups at

level s. The correction in the change rate of the wage shares is given by logarithm of the

ratio between the shares of each group s+1 in each s and the corresponding population

shares.

The information gain on the dynamics of the Theil index when one moves to a less

aggregated grouping structure is zero whenever sT&  is zero. From [52] it can be shown that

if the following expression occurs for every group in s then 0=sT& :
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Expression [54], once again, can be interpreted as equality between macro

behavior (in this case, at level s) and micro dynamics (at level s+1). Formally, [54] is

structurally similar to [49] (if we make 0'=T&  in [49]), and this interpretation follows from

the discussion after [49].

While [54] is a sufficient condition for 0=sT& , it is not a necessary condition. In

fact, even if [54] is not verified for every group in s, sT&  can be zero due to the interaction

of negative and positive rates of change in [52]. Therefore, the ability to move further with

general analytic results is limited by the possibility of complex interactions across the rates

of growth of the shares of population and income of different groups at different levels of

aggregation. Still, we were able to establish and understand the general structure of these

interactions and to derive a formal relationship between the dynamics of the between

group Theil index at different levels of aggregation.

A practical application of these results is associated with the decision over which

level of aggregation is low enough to have a good representation of the inter-individual
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inequality from the between group Theil index. As suggested in Conceição and Galbraith

(2000), the usage of the between industry Theil index can be used to construct long and

dense time-series of inequality. But at which level of industrial classification should we

stop to capture the dynamics of inequality? Do we need to consider a five-digit SIC code?

Or is a four-digit grouping structure good enough? Empirical results, shown as illustrative,

in Conceição, Galbraith and Bradford (2000) indicate that even a two-digit level could

provide a good indication of the dynamics of a five-digit level of aggregation. The results

derived in this section can be used to formally account for the information gain, or loss,

associated with problems such as these.

6- CONCLUSIONS

This paper explores the dynamic property of general entropy-based measures of

inequality, with a special focus on Theil measures. We derive explicit expressions for the

time change of general entropy inequality measures and for Theil measures. In both

instances, we show that it is possible to achieve a time-wise decomposition of changes in

inequality whereby the impact of changes of macro variables and micro behavior are

separated. This time-wise decomposition is parallel, in concept, to the static group-wise

decomposition that is exclusive of entropy based inequality measures. To achieve a total

decomposition of changes of inequality accounting both for income and population

changes, we transform the definition of the distribution of income from a discrete

formulation into a continuous formulation.

We then provide two applications of the generic results derived. First we show that

by providing dynamic income distribution rules – rules that define the way in which the

distribution of income changes over time at the micro level – some of the expressions for

the time changes of the Theil measures can be simplified further, and be expressed

exclusively as a function of macro variables. The specification of dynamic distribution

rules is a weaker (more general) condition than specifying an explicit income distribution

function. We illustrate the possibility of deriving expressions for dynamic micro behavior
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consistent with macro manifestations of the relationship between income growth and time

changes in inequality, using the explicit example of the Kuznets hypothesis.

A second application is associated with a formal expression linking the dynamics of

the Theil index at different levels of aggregation in a sequence of nested and hierarchic

grouping structures. A practical application of these results is the quantification of the

information loss that results from computing the Theil index at a higher level of

aggregation.
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